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Natural Logarithms

For any positive number a, the function value is easy to define when x is an
integer or rational number. When x is irrational, the meaning of is not so clear.
Similarly, the definition of the logarithm the inverse function of is not
completely obvious. In this section we use integral calculus to define the natural loga-
rithm function, for which the number a is a particularly important value. This function al-
lows us to define and analyze general exponential and logarithmic functions, and

Logarithms originally played important roles in arithmetic computations. Historically,
considerable labor went into producing long tables of logarithms, correct to five, eight, or
even more, decimal places of accuracy. Prior to the modern age of electronic calculators
and computers, every engineer owned slide rules marked with logarithmic scales. Calcula-
tions with logarithms made possible the great seventeenth-century advances in offshore
navigation and celestial mechanics. Today we know such calculations are done using
calculators or computers, but the properties and numerous applications of logarithms are
as important as ever.

Definition of the Natural Logarithm Function

One solid approach to defining and understanding logarithms begins with a study of the
natural logarithm function defined as an integral through the Fundamental Theorem of
Calculus. While this approach may seem indirect, it enables us to derive quickly the fa-
miliar properties of logarithmic and exponential functions. The functions we have studied
so far were analyzed using the techniques of calculus, but here we do something more
fundamental. We use calculus for the very definition of the logarithmic and exponential
functions.

The natural logarithm of a positive number x, written as ln x, is the value of an
integral.

y = loga x .
y = ax

ƒsxd = ax ,loga x ,
ax

ƒsxd = ax

7.2

DEFINITION The Natural Logarithm Function

ln x = L
x

1
 
1
t  dt, x 7 0

If then ln x is the area under the curve from to 
(Figure 7.9). For ln x gives the negative of the area under the curve from x to
1. The function is not defined for From the Zero Width Interval Rule for definite
integrals, we also have

ln 1 = L
1

1
 
1
t  dt = 0.

x … 0.
0 6 x 6 1,

t = xt = 1y = 1>tx 7 1,
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t

gives the negative of this area.

x

1

1

x
If 0 � x � 1, then ln x � dt � �
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L

FIGURE 7.9 The graph of and its
relation to the function The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the
axis as x moves from 1 to the left.

y = 1>x, x 7 0.
y = ln x

Notice that we show the graph of in Figure 7.9 but use in the inte-
gral. Using x for everything would have us writing

with x meaning two different things. So we change the variable of integration to t.
By using rectangles to obtain finite approximations of the area under the graph of

and over the interval between and as in Section 5.1, we can
approximate the values of the function ln x. Several values are given in Table 7.1. There is
an important number whose natural logarithm equals 1.

t = x ,t = 1y = 1>t

ln x = L
x

1
 
1
x dx ,

y = 1>ty = 1>x

DEFINITION The Number e
The number e is that number in the domain of the natural logarithm satisfying

ln (e) = 1

TABLE 7.1 Typical 2-place
values of ln x

x ln x

0 undefined

0.05

0.5

1 0

2 0.69

3 1.10

4 1.39

10 2.30

-0.69

-3.00

Geometrically, the number e corresponds to the point on the x-axis for which the area
under the graph of and above the interval [1, e] is the exact area of the unit square.
The area of the region shaded blue in Figure 7.9 is 1 sq unit when x = e .

y = 1>t
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478 Chapter 7: Transcendental Functions

The Derivative of 

By the first part of the Fundamental Theorem of Calculus (Section 5.4),

For every positive value of x, we have

d
dx

 ln x =

d
dx

 L
x

1
 
1
t  dt =

1
x .

y = ln x

d
dx

 ln x =
1
x .

Therefore, the function is a solution to the initial value problem 
with Notice that the derivative is always positive so the natural loga-

rithm is an increasing function, hence it is one-to-one and invertible. Its inverse is studied in
Section 7.3.

If u is a differentiable function of x whose values are positive, so that ln u is defined,
then applying the Chain Rule

to the function gives

d
dx

 ln u =

d
du

 ln u # du
dx

=
1
u

 
du
dx

 .

y = ln u

dy
dx

=

dy
du

 
du
dx

y s1d = 0.x 7 0,
dy>dx = 1>x,y = ln x

(1)
d
dx

 ln u =
1
u

 
du
dx

 , u 7 0

EXAMPLE 1 Derivatives of Natural Logarithms

(a)

(b) Equation (1) with gives

d
dx

 ln sx2
+ 3d =

1
x2

+ 3
# d
dx

 sx2
+ 3d =

1
x2

+ 3
# 2x =

2x
x2

+ 3
.

u = x2
+ 3

d
dx

 ln 2x =
1
2x

 
d
dx

 s2xd =
1
2x

 s2d =
1
x
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7.2 Natural Logarithms 479

Notice the remarkable occurrence in Example 1a. The function has the
same derivative as the function This is true of for any positive number a:

(2)

Since they have the same derivative, the functions and differ by a constant.

Properties of Logarithms

Logarithms were invented by John Napier and were the single most important improve-
ment in arithmetic calculation before the modern electronic computer. What made them
so useful is that the properties of logarithms enable multiplication of positive numbers by
addition of their logarithms, division of positive numbers by subtraction of their loga-
rithms, and exponentiation of a number by multiplying its logarithm by the exponent. We
summarize these properties as a series of rules in Theorem 2. For the moment, we restrict
the exponent r in Rule 4 to be a rational number; you will see why when we prove the rule.

y = ln xy = ln ax

d
dx

 ln ax =
1
ax

# d
dx

 saxd =
1
ax sad =

1
x  .

y = ln axy = ln x .
y = ln 2x

HISTORICAL BIOGRAPHY

John Napier
(1550–1617)

THEOREM 2 Properties of Logarithms
For any numbers and the natural logarithm satisfies the following
rules:

1. Product Rule:

2. Quotient Rule:

3. Reciprocal Rule: Rule 2 with 

4. Power Rule: r rationalln xr
= r ln x

a = 1ln 
1
x = - ln x

ln 
a
x = ln a - ln x

ln ax = ln a + ln x

x 7 0,a 7 0

We illustrate how these rules apply.

EXAMPLE 2 Interpreting the Properties of Logarithms

(a) Product

(b) Quotient

(c) Reciprocal

Power

EXAMPLE 3 Applying the Properties to Function Formulas

(a) Product

(b) Quotientln 
x + 1
2x - 3

= ln sx + 1d - ln s2x - 3d

ln 4 + ln sin x = ln s4 sin xd

 = - ln 23
= -3 ln 2

 ln 
1
8

= - ln 8

ln 4 - ln 5 = ln 
4
5 = ln 0.8

ln 6 = ln s2 # 3d = ln 2 + ln 3
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(c) Reciprocal

(d) Power

We now give the proof of Theorem 2. The steps in the proof are similar to those used
in solving problems involving logarithms.

Proof that The argument is unusual—and elegant. It starts by ob-
serving that ln ax and ln x have the same derivative (Equation 2). According to Corollary 2
of the Mean Value Theorem, then, the functions must differ by a constant, which means
that

for some C.
Since this last equation holds for all positive values of x, it must hold for 

Hence,

By substituting we conclude,

Proof that (assuming r rational) We use the same-derivative argument
again. For all positive values of x,

Eq. (1) with 

Since and r ln x have the same derivative,

for some constant C. Taking x to be 1 identifies C as zero, and we’re done.
You are asked to prove Rule 2 in Exercise 84. Rule 3 is a special case of Rule 2, obtained

by setting  and noting that  So we have established all cases of Theorem 2.

We have not yet proved Rule 4 for r irrational; we will return to this case in Section 7.3.
The rule does hold for all r, rational or irrational.

The Graph and Range of ln x

The derivative is positive for so ln x is an increasing function of
x. The second derivative, is negative, so the graph of ln x is concave down.-1>x2 ,

x 7 0,dsln xd>dx = 1>x

ln 1 = 0.a = 1

ln xr
= r ln x + C

ln xr

 = r # 1
x =

d
dx

 sr ln xd .

 =
1
xr rxr - 1

u = x r 
d
dx

 ln xr
=

1
xr 

d
dx

 sxrd

ln xr
= r ln x

ln ax = ln a + ln x .

 C = ln a .

ln 1 = 0 ln a = 0 + C

 ln sa # 1d = ln 1 + C

x = 1.

ln ax = ln x + C

ln ax = ln a + ln x

ln23 x + 1 = ln sx + 1d1>3
=

1
3

 ln sx + 1d

ln sec x = ln 
1

cos x = - ln cos x

480 Chapter 7: Transcendental Functions

Here is where we need r to be rational,
at least for now. We have proved the
Power Rule only for rational
exponents.
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7.2 Natural Logarithms 481

We can estimate the value of ln 2 by considering the area under the graph of 
and above the interval [1, 2]. In Figure 7.10 a rectangle of height 1 2 over the interval [1, 2]
fits under the graph. Therefore the area under the graph, which is ln 2, is greater than the
area, 1 2, of the rectangle. So Knowing this we have,

and

It follows that

We defined ln x for so the domain of ln x is the set of positive real numbers. The
above discussion and the Intermediate Value Theorem show that its range is the entire real
line giving the graph of shown in Figure 7.9.

The Integral 

Equation (1) leads to the integral formula

(3)

when u is a positive differentiable function, but what if u is negative? If u is negative, then
is positive and

Eq. (3) with u replaced by 

(4)

We can combine Equations (3) and (4) into a single formula by noticing that in each
case the expression on the right is In Equation (3), because

in Equation (4), because Whether u is positive or nega-
tive, the integral of (1 u) du is ln ƒ u ƒ + C.> u 6 0.ln s -ud = ln ƒ u ƒu 7 0;

ln u = ln ƒ u ƒln ƒ u ƒ + C.

 = ln s -ud + C .

-u L  
1
u du = L  

1
s -ud

 ds -ud

-u

L  
1
u du = ln u + C

1s1/ud du

y = ln x

x 7 0,

lim
x: q

 ln x = q and lim
x:0+

 ln x = - q .

ln 2-n
= -n ln 2 6 -n a1

2
b = -

n
2

.

ln 2n
= n ln 2 7 n a1

2
b =

n
2

ln 2 7 1>2.>
> y = 1>x

1 2

1

x

y

1
2

0

y � 1
x

FIGURE 7.10 The rectangle of height
fits beneath the graph of 

for the interval 1 … x … 2.
y = 1>xy = 1>2

If u is a differentiable function that is never zero,

(5)L  
1
u du = ln ƒ u ƒ + C .

Equation (5) applies anywhere on the domain of the points where 
We know that

L  un du =

un+ 1

n + 1
+ C, n Z -1 and rational

u Z 0.1>u,
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Equation (5) explains what to do when n equals Equation (5) says integrals of a certain
form lead to logarithms. If then and

So Equation (5) gives

whenever ƒ(x) is a differentiable function that maintains a constant sign on the domain
given for it.

EXAMPLE 4 Applying Equation (5)

(a)

(b)

Note that is always positive on so Equation (5) applies. 

The Integrals of tan x and cot x

Equation (5) tells us at last how to integrate the tangent and cotangent functions. For the
tangent function,

Reciprocal Rule

For the cotangent,

 = ln ƒ u ƒ + C = ln ƒ sin x ƒ + C = - ln ƒ csc x ƒ + C .

 L  cot x dx = L  
cos x dx

sin x
= L  

du
u

 = ln ƒ sec x ƒ + C .

 = - ln ƒ cos x ƒ + C = ln 
1

ƒ cos x ƒ

+ C

 = -L  
du
u = - ln ƒ u ƒ + C

 L  tan x dx = L  
sin x
cos x dx = L  

-du
u

[-p>2, p>2],u = 3 + 2 sin u

 = 2 ln ƒ 5 ƒ - 2 ln ƒ 1 ƒ = 2 ln 5

 = 2 ln ƒ u ƒ d
1

5

 L
p>2

-p>2
 

4 cos u
3 + 2 sin u

 du = L
5

1
 
2
u du

 = ln ƒ -1 ƒ - ln ƒ -5 ƒ = ln 1 - ln 5 = - ln 5

 L
2

0
 

2x
x2

- 5
 dx = L

-1

-5
 
du
u = ln ƒ u ƒ d

-5

-1

L  
ƒ¿sxd
ƒsxd

 dx = ln ƒ ƒsxd ƒ + C

L  
1
u du = L  

ƒ¿sxd
ƒsxd

 dx .

du = ƒ¿sxd dxu = ƒsxd ,
-1.

482 Chapter 7: Transcendental Functions

us2d = -1us0d = -5, 
du = 2x dx,u = x2

- 5,

us -p>2d = 1, usp>2d = 5

du = 2 cos u du,u = 3 + 2 sin u,

du = -sin x dx
u = cos x 7 0 on s -p>2, p>2d,

du = cos x dx

u = sin x,
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7.2 Natural Logarithms 483

EXAMPLE 5

Logarithmic Differentiation

The derivatives of positive functions given by formulas that involve products, quotients, and
powers can often be found more quickly if we take the natural logarithm of both sides
before differentiating. This enables us to use the laws of logarithms to simplify the formulas
before differentiating. The process, called logarithmic differentiation, is illustrated in the
next example.

EXAMPLE 6 Using Logarithmic Differentiation

Find dy dx if

Solution We take the natural logarithm of both sides and simplify the result with the
properties of logarithms:

Rule 2

Rule 1

Rule 3

We then take derivatives of both sides with respect to x, using Equation (1) on the left:

Next we solve for dy dx:

dy
dx

= y a 2x
x2

+ 1
+

1
2x + 6

-
1

x - 1
b .

>

1
y  

dy
dx

=
1

x2
+ 1

 # 2x +
1
2

 #  
1

x + 3
-

1
x - 1

.

 = ln sx2
+ 1d +

1
2

 ln sx + 3d - ln sx - 1d .

 = ln sx2
+ 1d + ln sx + 3d1>2

- ln sx - 1d

 = ln ssx2
+ 1dsx + 3d1>2d - ln sx - 1d

 ln y = ln 
sx2

+ 1dsx + 3d1>2
x - 1

y =

sx2
+ 1dsx + 3d1>2

x - 1
 , x 7 1.

>

 =
1
2

 ln ƒ sec u ƒ d
0

p>3
=

1
2

sln 2 - ln 1d =
1
2

 ln 2

 L
p>6

0
 tan 2x dx = L

p>3
0

 tan u # du
2

=
1
2L

p>3
0

 tan u du

L  cot u du = ln ƒ sin u ƒ + C = - ln ƒ csc x ƒ + C

L  tan u du = - ln ƒ cos u ƒ + C = ln ƒ sec u ƒ + C

usp>6d = p>3
us0d = 0,

dx = du>2,

Substitute u = 2x,
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Finally, we substitute for y:

A direct computation in Example 6, using the Quotient and Product Rules, would be much
longer.

dy
dx

=

sx2
+ 1dsx + 3d1>2

x - 1
 a 2x

x2
+ 1

+
1

2x + 6
-

1
x - 1

b .

484 Chapter 7: Transcendental Functions
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484 Chapter 7: Transcendental Functions

EXERCISES 7.2

Using the Properties of Logarithms
1. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75 b. ln (4 9) c. ln (1 2)

d. e. f.

2. Express the following logarithms in terms of ln 5 and ln 7.

a. ln (1 125) b. ln 9.8 c.

d. ln 1225 e. ln 0.056

f.

Use the properties of logarithms to simplify the expressions in
Exercises 3 and 4.

3. a. b.

c.

4. a. b.

c.

Derivatives of Logarithms
In Exercises 5–36, find the derivative of y with respect to x, t, or as
appropriate.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. y = ln sln sln xddy = ln sln xd

y =

x ln x
1 + ln x

y =

ln x
1 + ln x

y =

1 + ln t
ty =

ln t
t

y =

x3

3
 ln x -

x3

9
y =

x4

4
 ln x -

x4

16

y = t2ln ty = t sln td2

y = sln xd3y = ln x3

y = ln s2u + 2dy = ln su + 1d

y = ln 
10
xy = ln 

3
x

y = ln st3>2dy = ln st2d
y = ln kx, k constanty = ln 3x

u ,

3 ln23 t2
- 1 - ln st + 1d

ln s8x + 4d - 2 ln 2ln sec u + ln cos u

1
2

 ln s4t4d - ln 2

ln s3x2
- 9xd + ln a 1

3x
bln sin u - ln asin u

5
b

sln 35 + ln s1>7dd>sln 25d

ln 727>
ln 213.5ln 322ln23 9

>>

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

Integration
Evaluate the integrals in Exercises 37–54.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54. L  
sec x dx2ln ssec x + tan xdL  

dx
21x + 2x

L
p>12

0
 6 tan 3x dxL

p

p>2
 2 cot 

u

3
 du

L
p>2
p>4

 cot t dtL
p>2

0
 tan 

x
2

 dx

L  
sec y tan y

2 + sec y
 dyL  

3 sec2 t
6 + 3 tan t

 dt

L
16

2
 

dx

2x2ln xL
4

2
 

dx

xsln xd2

L
4

2
 

dx
x ln xL

2

1
 
2 ln x

x  dx

L
p>3

0
 

4 sin u

1 - 4 cos u
 duL

p

0
 

sin t
2 - cos t

 dt

L  
8r dr

4r2
- 5L  

2y dy

y2
- 25

L
0

-1
 

3 dx
3x - 2L

-2

-3
 
dx
x

y = L
23 x2x

 ln t dty = L
x2

x2>2
 ln 2t dt

y = ln C sx + 1d5

sx + 2d20y = ln asx2
+ 1d521 - x

b

y = ln a2sin u cos u

1 + 2 ln u
by = ln ssec sln udd

y = 2ln 1ty =

1 + ln t
1 - ln t

y =

1
2

 ln 
1 + x
1 - x

y = ln 
1

x2x + 1

y = ln ssec u + tan ud
y = ussin sln ud + cos sln udd
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7.2 Natural Logarithms 485

Logarithmic Differentiation
In Exercises 55–68, use logarithmic differentiation to find the deriva-
tive of y with respect to the given independent variable.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

Theory and Applications
69. Locate and identify the absolute extreme values of

a. ln (cos x) on 

b. cos (ln x) on [1 2, 2].

70. a. Prove that is increasing for 

b. Using part (a), show that if 

71. Find the area between the curves and from
to 

72. Find the area between the curve and the x-axis from
to 

73. The region in the first quadrant bounded by the coordinate axes,

the line and the curve is revolved about
the y-axis to generate a solid. Find the volume of the solid.

74. The region between the curve and the x-axis from
to is revolved about the x-axis to generate a

solid. Find the volume of the solid.

75. The region between the curve and the x-axis from
to is revolved about the y-axis to generate a solid.

Find the volume of the solid.

76. In Section 6.2, Exercise 6, we revolved about the y-axis the region
between the curve and the x-axis from 
to to generate a solid of volume What volume do you
get if you revolve the region about the x-axis instead? (See
Section 6.2, Exercise 6, for a graph.)

77. Find the lengths of the following curves.

a.

b.

78. Find a curve through the point (1, 0) whose length from tox = 1

x = sy>4d2
- 2 ln sy>4d, 4 … y … 12

y = sx2>8d - ln x, 4 … x … 8

36p .x = 3
x = 0y = 9xN2x3

+ 9

x = 2x = 1>2
y = 1>x2

x = p>2x = p>6
y = 2cot x

x = 2N2y + 1y = 3,

x = p>3.x = -p>4
y = tan x

x = 5.x = 1
y = ln 2xy = ln x

x 7 1.ln x 6 x

x 7 1.ƒsxd = x - ln x

>
[-p>4, p>3] ,

y = B3 xsx + 1dsx - 2d
sx2

+ 1ds2x + 3d
y = B3 xsx - 2d

x2
+ 1

y = C sx + 1d10

s2x + 1d5y =

x2x2
+ 1

sx + 1d2>3

y =

u sin u2sec u
y =

u + 5
u cos u

y =

1
t st + 1dst + 2d

y = t st + 1dst + 2d

y = stan ud22u + 1y = 2u + 3 sin u

y = A 1
t st + 1d

y = A t
t + 1

y = 2sx2
+ 1dsx - 1d2y = 2xsx + 1d

is

79. a. Find the centroid of the region between the curve 
and the x-axis from to Give the coordinates to
two decimal places.

b. Sketch the region and show the centroid in your sketch.

80. a. Find the center of mass of a thin plate of constant density
covering the region between the curve and the x-
axis from to 

b. Find the center of mass if, instead of being constant, the
density function is 

Solve the initial value problems in Exercises 81 and 82.

81.

82.

83. Instead of approxi-
mating ln x near we approximate near 
We get a simpler formula this way.

a. Derive the linearization at 

b. Estimate to five decimal places the error involved in replacing
by x on the interval [0, 0.1].

c. Graph and x together for Use
different colors, if available. At what points does the
approximation of seem best? Least good? By
reading coordinates from the graphs, find as good an upper
bound for the error as your grapher will allow.

84. Use the same-derivative argument, as was done to prove Rules 1
and 4 of Theorem 2, to prove the Quotient Rule property of loga-
rithms.

Grapher Explorations
85. Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) to-

gether for What is going on? Explain.

86. Graph in the window 
Explain what you see. How could you change the formula to turn
the arches upside down?

87. a. Graph and the curves for 
4, 8, 20, and 50 together for 

b. Why do the curves flatten as a increases? (Hint: Find an 
a-dependent upper bound for )

88. Does the graph of have an inflection
point? Try to answer the question (a) by graphing, (b) by using cal-
culus.

y = 1x - ln x,  x 7 0,

ƒ y¿ ƒ .

0 … x … 23.
a = 2,y = ln sa + sin xdy = sin x

0 … x … 22, -2 … y … 0.y = ln ƒ sin x ƒ

0 6 x … 10.

ln s1 + xd

0 … x … 0.5.ln s1 + xd
ln s1 + xd

x = 0.ln s1 + xd L x

x = 0.ln s1 + xdx = 1,
The linearization of ln s1 + xd at x = 0

d2y

dx2 = sec2 x, y s0d = 0 and y¿s0d = 1

dy

dx
= 1 +

1
x , y s1d = 3

dsxd = 4>1x .

x = 16.x = 1
y = 1>1x

x = 2.x = 1
y = 1>x

L = L
2

1 A1 +

1
x2 dx .

x = 2

T

T
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486 Chapter 7: Transcendental Functions

The Exponential Function

Having developed the theory of the function ln x, we introduce the exponential function
as the inverse of ln x. We study its properties and compute its derivative and in-

tegral. Knowing its derivative, we prove the power rule to differentiate when n is any
real number, rational or irrational.

The Inverse of ln x and the Number e

The function ln x, being an increasing function of x with domain and range
has an inverse with domain and range The graph of

is the graph of ln x reflected across the line As you can see in Figure 7.11,

The function is also denoted by exp x.
In Section 7.2 we defined the number e by the equation so

Although e is not a rational number, later in this section we see one
way to express it as a limit. In Chapter 11, we will calculate its value with a computer to as
many places of accuracy as we want with a different formula (Section 11.9, Example 6).
To 15 places,

The Function 

We can raise the number e to a rational power r in the usual way:

and so on. Since e is positive, is positive too. Thus, has a logarithm. When we take the
logarithm, we find that

Since ln x is one-to-one and this equation tells us that

(1)

We have not yet found a way to give an obvious meaning to for x irrational. But 
has meaning for any x, rational or irrational. So Equation (1) provides a way to extend the
definition of to irrational values of x. The function is defined for all x, so we use it
to assign a value to at every point where had no previous definition.exex

ln-1 xex

ln-1 xex

er
= ln-1 r = exp r for r rational.

ln sln-1 rd = r ,

ln er
= r ln e = r # 1 = r .

erer

e2
= e # e, e-2

=
1
e2, e1>2

= 2e ,

y � ex

e = 2.718281828459045.

e = ln-1s1d = exp s1d .
ln sed = 1,

ln-1 x

lim
x: q

 ln-1 x = q and lim
x: - q

 ln-1 x = 0.

y = x .ln-1 x
s0, q d .s - q , q dln-1 xs - q , q d ,

s0, q d

xn
exp x = ex

7.3

x

y

1

10 2 e 4

2

e

4

–1–2

5

6

7

8

(1, e)

y � ln x

y � ln–1x
or

x � ln y

FIGURE 7.11 The graphs of and
The number e is

ln-1 1 = exp s1d .
y = ln-1 x = exp x .

y = ln x

DEFINITION The Natural Exponential Function
For every real number x, ex

= ln-1 x = exp x .

For the first time we have a precise meaning for an irrational exponent. Usually the
exponential function is denoted by rather than exp x. Since ln x and are inverses of
one another, we have

exex

Typical values of 

x (rounded)

0.37

0 1

1 2.72

2 7.39

10 22026

100 2.6881 * 1043

-1

ex

ex
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7.3 The Exponential Function 487

The domain of ln x is and its range is So the domain of is 
and its range is 

EXAMPLE 1 Using the Inverse Equations

(a)

(b)

(c)

(d)

(e)

(f )

(g) One way

(h) Another way

EXAMPLE 2 Solving for an Exponent

Find k if 

Solution Take the natural logarithm of both sides:

Eq. (3)

The General Exponential Function 
Since for any positive number a, we can think of as We there-
fore make the following definition.

se ln adx
= ex ln a .axa = eln a

ax

 k =
1
2

 ln 10.

 2k = ln 10

 ln e2k
= ln 10

 e2k
= 10

e2k
= 10.

e3 ln 2
= seln 2d3

= 23
= 8

e3 ln 2
= eln 23

= eln 8
= 8

eln sx2
+ 1d

= x2
+ 1

eln 2
= 2

ln esin x
= sin x

ln 2e =
1
2

ln e-1
= -1

ln e2
= 2

s0, q d .
s - q , q dexs - q , q d .s0, q d

Inverse Equations for and ln x

(2)

(3) ln sexd = x sall xd

 e ln x
= x sall x 7 0d

ex

DEFINITION General Exponential Functions
For any numbers and x, the exponential function with base a is

ax
= ex ln a .

a 7 0

When the definition gives ax
= ex ln a

= ex ln e
= ex # 1

= ex .a = e ,

Transcendental Numbers and
Transcendental Functions
Numbers that are solutions of polynomial
equations with rational coefficients are
called algebraic: is algebraic because
it satisfies the equation and 

is algebraic because it satisfies the
equation Numbers that are
not algebraic are called transcendental,
like e and In 1873, Charles Hermite
proved the transcendence of e in the
sense that we describe. In 1882, C.L.F.
Lindemann proved the transcendence 
of 

Today, we call a function 
algebraic if it satisfies an equation of the
form 

in which the P’s are polynomials in x
with rational coefficients. The function

is algebraic because 
it satisfies the equation

Here the
polynomials are 
and Functions that are not
algebraic are called transcendental.

P0 = -1.
P2 = x + 1, P1 = 0,

sx + 1dy2
- 1 = 0.

y = 1>2x + 1

Pn yn
+

Á
+ P1 y + P0 = 0

y = ƒsxd
p .

p.

x2
- 3 = 0.

23
x + 2 = 0,

-2
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EXAMPLE 3 Evaluating Exponential Functions

(a)

(b)

We study the calculus of general exponential functions and their inverses in the next
section. Here we need the definition in order to discuss the laws of exponents for 

Laws of Exponents

Even though is defined in a seemingly roundabout way as it obeys the familiar
laws of exponents from algebra. Theorem 3 shows us that these laws are consequences of
the definitions of ln x and ex .

ln-1 x ,ex

ex .

2p = ep ln 2
L e2.18

L 8.8

223
= e23 ln 2

L e1.20
L 3.32

488 Chapter 7: Transcendental Functions

HISTORICAL BIOGRAPHY

Siméon Denis Poisson
(1781–1840)

THEOREM 3 Laws of Exponents for 
For all numbers and the natural exponential obeys the following laws:

1.

2.

3.

4. sex1dx2
= ex1 x2

= sex2dx1

ex1

ex2
= ex1 - x2

e-x
=

1
ex

ex1 # ex2
= ex1 + x2

exx2,x, x1,

ex

Proof of Law 1 Let

(4)

Then

Product Rule for logarithms

Exponentiate.

The proof of Law 4 is similar. Laws 2 and 3 follow from Law 1 (Exercise 78).

EXAMPLE 4 Applying the Exponent Laws

(a) Law 1

(b) Law 2

(c) Law 3

(d) Law 4se3dx
= e3x

= sexd3

e2x

e = e2x- 1

e-ln x
=

1
eln x =

1
x

ex+ ln 2
= ex # eln 2

= 2ex

 = ex1 ex2 .

e ln u
= u = y1 y2

 ex1 + x2
= e ln y1 y2

 = ln y1 y2

 x1 + x2 = ln y1 + ln y2

 x1 = ln y1 and x2 = ln y2

y1 = ex1 and y2 = ex2 .

Take logs of both
sides of Eqs. (4).
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7.3 The Exponential Function 489

Theorem 3 is also valid for the exponential function with base a. For example,

Definition of

Law 1

Factor ln a

Definition of

The Derivative and Integral of 

The exponential function is differentiable because it is the inverse of a differentiable func-
tion whose derivative is never zero (Theorem 1). We calculate its derivative using Theorem 1
and our knowledge of the derivative of ln x. Let

Then,

Theorem 1

That is, for we find that so the natural exponential function is its
own derivative. We will see in Section 7.5 that the only functions that behave this way are
constant multiples of In summary,ex .

exdy>dx = exy = ex ,

 = ex .

ƒ¿szd =

1
z  with z = ex =

1

a 1
ex b

ƒ -1sxd = ex =
1

ƒ¿sexd

 =
1

ƒ¿sƒ -1sxdd

 =

d
dx

 ƒ -1sxd

 
dy
dx

=

d
dx

 sexd =

d
dx

 ln-1 x

ƒsxd = ln x and y = ex
= ln-1 x = ƒ-1sxd .

ex

ax = ax1 + x2 .

 = e sx1 + x2dln a

 = ex1 ln a + x2 ln a

ax ax1 # ax2
= ex1 ln a # ex2 ln a

ax ,

(5)
d
dx

 ex
= ex

EXAMPLE 5 Differentiating an Exponential

The Chain Rule extends Equation (5) in the usual way to a more general form.

 = 5ex

 
d
dx

 s5exd = 5 
d
dx

 ex
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EXAMPLE 6 Applying the Chain Rule with Exponentials

(a) Eq. (6) with 

(b) Eq. (6) with 

The integral equivalent of Equation (6) is

u = sin x
d
dx

 esin x
= esin x 

d
dx

 ssin xd = esin x # cos x

u = -x
d
dx

 e-x
= e-x 

d
dx

 s -xd = e-xs -1d = -e-x

490 Chapter 7: Transcendental Functions

If u is any differentiable function of x, then

(6)
d
dx

 eu
= eu 

du
dx

.

L  eu du = eu
+ C .

EXAMPLE 7 Integrating Exponentials

(a)

(b) Antiderivative from Example 6

EXAMPLE 8 Solving an Initial Value Problem

Solve the initial value problem

Solution We integrate both sides of the differential equation with respect to x to obtain

e y
= x2

+ C .

e y 
dy
dx

= 2x, x 7 23; ys2d = 0.

 = e1
- e0

= e - 1

 L
p>2

0
 esin x cos x dx = esin x d

0

p>2

 =
1
3

 s8 - 1d =

7
3

 =
1
3

 eu d
0

ln 8

 =
1
3L

ln 8

0
 eu du

 L
ln 2

0
 e3x dx = L

ln 8

0
 eu # 1

3
 du usln 2d = 3 ln 2 = ln 23

= ln 8

u = 3x, 1
3

 du = dx, us0d = 0,
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7.3 The Exponential Function 491

We use the initial condition to determine C:

This completes the formula for 

To find y, we take logarithms of both sides:

Notice that the solution is valid for 
Let’s check the solution in the original equation.

The solution checks. 

The Number e Expressed as a Limit

We have defined the number e as the number for which or the value exp (1). We
see that e is an important constant for the logarithmic and exponential functions, but what
is its numerical value? The next theorem shows one way to calculate e as a limit.

ln e = 1,

 = 2x .

e ln y
= y = sx2

- 3d 
2x

x2
- 3

y = ln sx2
- 3d = e ln sx2

- 3d 
2x

x2
- 3

Derivative of ln sx2
- 3d = e y 

2x
x2

- 3

 e y 
dy
dx

= e y 
d
dx

 ln sx2
- 3d

x 7 23.

 y = ln sx2
- 3d .

 ln e y
= ln sx2

- 3d

e y
= x2

- 3.

e y :

 = 1 - 4 = -3.

 C = e0
- s2d2

ys2d = 0

THEOREM 4 The Number e as a Limit
The number e can be calculated as the limit

e = lim
x:0

 s1 + xd1>x .

Proof If then so But, by the definition of derivative,

ln is continuous. = lim
x:0

 ln s1 + xd1/x
= ln c lim

x:0
s1 + xd1/x d

ln 1 = 0 = lim
x:0

 
ln s1 + xd - ln 1

x = lim
x:0

  
1
x   ln s1 + xd

ƒ¿s1d = lim
h:0

 
ƒs1 + hd - ƒs1d

h
= lim

x:0
 
ƒs1 + xd - ƒs1d

x

ƒ¿s1d = 1.ƒ¿sxd = 1>x ,ƒsxd = ln x ,
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Because we have

Therefore,

By substituting we can also express the limit in Theorem 4 as

(7)

At the beginning of the section we noted that to 15 decimal
places.

The Power Rule (General Form)

We can now define for any and any real number n as Therefore, the n
in the equation no longer needs to be rational—it can be any number as long
as 

Together, the law and the definition enable us to establish
the Power Rule for differentiation in its final form. Differentiating with respect to x
gives

Definition of

Chain Rule for

The definition again

In short, as long as 

The Chain Rule extends this equation to the Power Rule’s general form.

d
dx

 xn
= nxn - 1 .

x 7 0,

 = nxn - 1 .

 = xn # n
x

eu = en ln x # d
dx

 sn ln xd

xn,  x 7 0 
d
dx

 xn
=

d
dx

 en ln x

xn
xn

= en ln xax>ay
= ax - y

ln eu
= u,  any u ln xn

= ln sen ln xd = n ln x

x 7 0:
ln xn

= n ln x
xn

= en ln x .x 7 0xn

e = 2.718281828459045

e = lim
y: q

 a1 +
1
y b

y

.

y = 1>x ,

ln e = 1 and ln is one-to-onelim
x:0

 s1 + xd1>x
= e

ln c lim
x:0

s1 + xd1>x d = 1

ƒ¿s1d = 1,

492 Chapter 7: Transcendental Functions

Power Rule (General Form)
If u is a positive differentiable function of x and n is any real number, then is a
differentiable function of x and

d
dx

 un
= nun - 1 

du
dx

.

un
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7.3 The Exponential Function 493

EXAMPLE 9 Using the Power Rule with Irrational Powers

(a)

(b)

 = 3ps2 + sin 3xdp- 1scos 3xd .

 
d
dx

 s2 + sin 3xdp = ps2 + sin 3xdp- 1scos 3xd # 3

d
dx

 x22
= 22x22- 1 sx 7 0d

4100 AWL/Thomas_ch07p466-552  8/20/04  10:02 AM  Page 493

http://media.pearsoncmg.com/aw/aw_mml_shared_1/copyright.html


7.3 The Exponential Function 493

EXERCISES 7.3

Algebraic Calculations with the Exponential
and Logarithm
Find simpler expressions for the quantities in Exercises 1–4.

1. a. b. c.

2. a. b. c.

3. a. b. c.

4. a. b. c.

Solving Equations with Logarithmic
or Exponential Terms
In Exercises 5–10, solve for y in terms of t or x, as appropriate.

5. 6.

7. 8.

9.

10.

In Exercises 11 and 12, solve for k.

11. a. b. c.

12. a. b. c.

In Exercises 13–16, solve for t.

13. a. b. c.

14. a. b. c.

15. 16.

Derivatives
In Exercises 17–36, find the derivative of y with respect to x, t, or as
appropriate.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. y = ln s3ue-udy = eussin u + cos ud
y = s9x2

- 6x + 2de3xy = sx2
- 2x + 2dex

y = s1 + 2xde-2xy = xex
- ex

y = e s41x + x2dy = e5- 7x

y = e2x>3y = e-5x

u ,

e sx2de s2x + 1d
= ete2t

= x2

esln 2dt
=

1
2

ekt
=

1
10

e-0.01t
= 1000

esln 0.2dt
= 0.4ekt

=

1
2

e-0.3t
= 27

esln 0.8dk
= 0.880ek

= 1e5k
=

1
4

ek>1000
= a100e10k

= 200e2k
= 4

ln sy2
- 1d - ln sy + 1d = ln ssin xd

ln sy - 1d - ln 2 = x + ln x

ln s1 - 2yd = tln sy - 40d = 5t

ln y = - t + 5ln y = 2t + 4

ln se2 ln xdln se sexddln sesec ud
ln se-x2

- y2

dln sln eed2 ln 2e

e ln px - ln 2e-ln 0.3e ln sx2
+ y2d

e ln x - ln ye-ln x2

e ln 7.2

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Exercises 37–40, find dy dx.

37. 38.

39. 40.

Integrals
Evaluate the integrals in Exercises 41–62.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57.

58. Lecsc sp+ td csc sp + td cot sp + td dt

Lesec pt sec pt tan pt dt

L
p>2
p>4

s1 + ecot ud csc2 u duL
p>4

0
s1 + e tan ud sec2 u du

L  
e-1>x2

x3  dxL  
e1>x
x2  dx

L t3e st 4d dtL  2t e-t 2

 dt

L  
e-2r2r

 drL  
e2r2r

 dr

L
ln 16

0
 ex>4 dxL

ln 9

ln 4
 ex>2 dx

L  2es2x- 1d dxL  8esx+ 1d dx

L
0

-ln 2
 e-x dxL

ln 3

ln 2
 ex dx

Ls2ex
- 3e-2xd dxLse3x

+ 5e-xd dx

tan y = ex
+ ln xe2x

= sin sx + 3yd
ln xy = ex+ yln y = ey sin x

>
y = L

e2x

e41x
 ln t dty = L

ln x

0
 sin et dt

y = esin tsln t2
+ 1dy = escos t+ ln td

y = ln a 2u
1 + 2u by = ln a eu

1 + eu
b

y = ln s2e-t sin tdy = ln s3te-td
y = u3e-2u cos 5uy = cos se-u2

d
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59. 60.

61. 62.

Initial Value Problems
Solve the initial value problems in Exercises 63–66.

63.

64.

65.

66.

Theory and Applications
67. Find the absolute maximum and minimum values of 

on [0, 1].

68. Where does the periodic function take on its ex-
treme values and what are these values?

69. Find the absolute maximum value of and say
where it is assumed.

70. Graph and its first derivative together. Com-
ment on the behavior of ƒ in relation to the signs and values of 
Identify significant points on the graphs with calculus, as neces-
sary.

71. Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve below by the curve 
and on the right by the line 

72. Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve below by the curve

and on the right by the line 

73. Find a curve through the origin in the xy-plane whose length from
to is

74. Find the area of the surface generated by revolving the curve
about the y-axis.x = sey

+ e-yd>2, 0 … y …  ln 2 ,

L = L
1

0 A1 +

1
4

 ex dx .

x = 1x = 0

x = 2 ln 2 .y = e-x>2 ,
y = ex>2 ,

x = ln 3 .
y = ex ,y = e2x ,

ƒ¿ .
ƒsxd = sx - 3d2ex

ƒsxd = x2 ln s1>xd

x

y

0

y � 2esin (x/2)

ƒsxd = 2esin sx>2d

ex
- 2x

ƒsxd =

d2y

dt2 = 1 - e2t, y s1d = -1 and y¿s1d = 0

d2y

dx2 = 2e-x, y s0d = 1 and y¿s0d = 0

dy

dt
= e-t sec2 spe-td, y sln 4d = 2>p

dy

dt
= et sin set

- 2d, y sln 2d = 0

L  
dx

1 + exL  
er

1 + er dr

L
2ln p

0
 2x ex2

 cos sex2

d dxL
ln sp>2d

ln sp>6d
 2ey cos ey dy

75. a. Show that 

b. Find the average value of ln x over [1, e].

76. Find the average value of on [1, 2].

77. The linearization of

a. Derive the linear approximation at 

b. Estimate to five decimal places the magnitude of the error
involved in replacing by on the interval [0, 0.2].

c. Graph and together for Use different
colors, if available. On what intervals does the approximation
appear to overestimate Underestimate 

78. Laws of Exponents

a. Starting with the equation derived in the text,
show that for any real number x. Then show that

for any numbers and 

b. Show that for any numbers and 

79. A decimal representation of e Find e to as many decimal
places as your calculator allows by solving the equation 

80. The inverse relation between and ln x Find out how good
your calculator is at evaluating the composites

81. Show that for any number 

(See accompanying figure.)

82. The geometric, logarithmic, and arithmetic mean inequality

a. Show that the graph of is concave up over every interval of
x-values.

ex

x

y

10 a

ln a

y � ln x

L
a

1
 ln x dx + L

ln a

0
 e y dy = a ln a .

a 7 1

eln x and  ln sexd .

e x

ln x = 1.

x2 .x1sex1dx2
= ex1 x2

= sex2dx1

x2 .x1ex1>ex2
= ex1 - x2

e-x
= 1>ex

ex1ex2
= ex1 + x2 ,

ex?ex?

-2 … x … 2.1 + xex

1 + xex

x = 0.ex
L 1 + x

e x at x = 0

ƒsxd = 1>x

1  ln x dx = x ln x - x + C.

0

ln 2

1

x �
ey � e–y

2

x

y

494 Chapter 7: Transcendental Functions

T

T

T

T

T
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495

b. Show, by reference to the accompanying figure, that if
then

c. Use the inequality in part (b) to conclude that

This inequality says that the geometric mean of two positive
numbers is less than their logarithmic mean, which in turn is
less than their arithmetic mean.

(For more about this inequality, see “The Geometric,
Logarithmic, and Arithmetic Mean Inequality” by Frank Burk,

2ab 6

b - a
ln b - ln a

6

a + b
2

.

e sln a + ln bd>2 # sln b - ln ad 6 L
ln b

ln a
 ex dx 6

e ln a
+ e ln b

2
# sln b - ln ad .

0 6 a 6 b
American Mathematical Monthly, Vol. 94, No. 6, June–July
1987, pp. 527–528.)
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7.3 The Exponential Function
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